

FORMALDEHYDE DESTRUCTION	Proof of Performance Tests
CONTI 2 HEAT PLANT	
BORG PANELS PTY LIMITED	
OBERON, NSW	
PROJECT NO.:	5707/S24371B/16
DATE OF SURVEY:	1 September 2016
Date of Final Issue:	24 October 2016

Peter W Stephenson & Associates Pty Ltd ACN 002 600 526 (Incorporated in NSW) ABN 75 002 600 526

> 52A Hampstead Road Auburn NSW 2144 Australia Tel: (02) 9737 9991

E-Mail: info@stephensonenv.com.au

FORMALDEHYDE DESTRUCTION PROOF OF PERFORMANCE TESTS

CONTI 2 HEAT PLANT

BORG PANELS PTY LIMITED

OBERON, NSW

PROJECT NO.: 5707/S24371B/16

DATE OF SURVEY: 1 SEPTEMBER 2016

DATE OF FINAL ISSUE: 24 OCTOBER 2016

Pw Stephenson

J WEBER

A NAGHIZADEH

TABLE OF CONTENTS

1	INTROD	DUCTION1
2	Produ	ction Conditions2
3	RESULTS	s AND DISCUSSION
	3.1	INTRODUCTION
	3.2	FORMALDEHYDE (HCHO)
	3.3	CARBON DIOXIDE
	3.4	CARBON MONOXIDE
	3.5	OXYGEN (O2)
	3.6	Oxides of Nitrogen (NO _x)
4	CONC	LUSIONS
5	TEST M	ETHODS
	5.1	Exhaust Gas Velocity
	5.2	Exhaust Gas Temperature
	5.3	Formaldehyde
	5.4	Continuous Gaseous Analysis
	5.5	ACCURACY
APPEN	DIX A –	EMISSION TEST RESULTS
APPEN	dix B – (Continuous Logs
APPEN	DIX C –	NATA ENDORSED EMISSION TEST REPORT
APPEN	DIX D – I	INSTRUMENT CALIBRATION DETAILS
APPEN	dix E – S	SAMPLE LOCATIONS
APPEN	DIX F – P	PRODUCTION INFORMATION

TABLE OF TABLES

TABLE 1-1 SCOPE OF WORK	. 1
Table 3-1 Summary of Average Emission Concentration Results	. 5
Table 5-1 Estimation of Measurement Uncertainty	.8

TABLE OF TABLES – APPENDICES

TABLE A-1	Emission Test Results, Flow – Inlet 1 (Paper Treater)	I
TABLE A-2	Emission Test Results, Flow – Inlet 2 (Wet Scrubber)	I
TABLE A-3	Emission Test Results, Flow – Outlet (Conti-2 Heat Plant)	,

TABLE OF FIGURES – APPENDICES

FIGURE B-1 CONTINUOUS LOG RECORD - NO_x, CO, CO₂ & O₂ Inlet Location 1, September 1, 2016 II FIGURE B-2 CONTINUOUS LOG RECORD - NO_x, CO, CO₂ & O₂ Inlet Location 2, September 1, 2016 ... III FIGURE B-3 CONTINUOUS LOG RECORD - NO_x, CO, CO₂ & O₂ Outlet Location, September 1, 2016 ... IV

FIGURE E-1	Inlet Location 1 – Paper Treater Duct	
FIGURE E-2	INLET LOCATION 2 – WET SCRUBBER DUCT	
FIGURE E-3	OUTLET LOCATION – CONTI-2 HEAT PLANT OUTLET	III
FIGURE E-4	Conti-2 Heat Plant Outlet Bypass Damper Controls (Damper Shut)	III

1 INTRODUCTION

Stephenson Environmental Management Australia (SEMA) was requested by Borg Panels Pty Ltd to conduct a Proof of Performance (PoP) emission trial on their Conti 2 Heat Plant at Oberon, New South Wales (NSW). This trial was undertaken on 1st September, 2016 in response to the request of the NSW EPA, reference EF13/3921; DOC16/282523-01 of the 2 August 2016.

The objective of the PoP trial was to determine the Formaldehyde (HCHO) removal efficiency from the gas stream being thermally treated in the Conti 2 Heat Plant.

Formaledyde gas samples were taken at two Heat Plant inlet locations, namely the Inlet 1 (Paper Treater) and Inlet 2 (Scrubber) and at the Conti 2 Heat Plant outlet location. The scope of work is presented in Table 1-1.

Parameter		Test Method		
	Inlet Location 1 Paper Treater	Inlet Location 2 Wet Scrubber	Outlet Duct to Dryers	
Velocity and flow	✓	✓	✓	TM-2
CO ₂	Continuous analyser	Continuous analyser	Continuous analyser	TM 24
со	Continuous analyser	Continuous analyser	Continuous analyser	TM 32
НСНО	Duplicate samples	Duplicate samples	Duplicate samples	TM-34
NOx	Continuous analyser	Continuous analyser	Continuous analyser	TM 11
O ₂	Continuous analyser	Continuous analyser	Continuous analyser	TM-25

TABLE 1-1 SCOPE OF WORK

Key:

CO ₂	=	Carbon Dioxide
CO	=	Carbon Monoxide
HCHO	=	Formaldehyde
NO _x	=	Oxides of Nitrogen
O ₂	=	Oxygen
TM	=	NSW approved test method

2 **PRODUCTION CONDITIONS**

Borg Panels personnel considered the facility was operating under typical conditions on the day of testing. Refer to Appendix F for detailed production records.

Combustion chamber in Heat Plant was operating in range of 920C to 950C with a residence time greater than 0.7 seconds during the PoP emission test works.

All other relevant production records are held by Borg Panels and are available upon request.

3 RESULTS AND DISCUSSION

3.1 INTRODUCTION

SEMA completed all the sampling and analysis for flow, temperature, moisture, CO, CO_2 and NO_x . SEMA is NATA accredited (No.15043) for this work. All sampling and analysis was conducted in accordance with the Office of Environment and Heritage (OEH) Approved Methods for the Sampling and Analysis of Air Pollutants in New South Wales. Refer to SEMA's NATA endorsed Emission Test Report in Appendix C which includes the laboratory Certificates of Analysis. The formaldehyde samples were analysed by the NATA accredited (No. 3726) TestSafe Australia laboratory, Report No.2016-2756.

The results of the stack emission tests are presented in Sections 3.2 to 3.6 and detailed in Appendix A. Appendix B presents a graphical logged record of CO, CO_2 and NO_x continuous emission analysis.

Appendix D details the most recent calibration of each instrument used to take measurements. Appendix E presents photographic reference and information on emission sampling point locations.

3.2 FORMALDEHYDE (HCHO)

Inlet 1: The emission concentrations of HCHO from the Inlet Location 1 (Paper Treater) for the two sampling runs were 26.6 milligrams per cubic metre (mg/m^3) and 26.3 mg/m³ respectively. The average HCHO emission concentration was 26.5 mg/m³. The HCHO mass emission rate from the Inlet Location 1 for the two sampling runs was 0.17 grams per second (g/s) and 0.16 g/s respectively.

Inlet 2: The emission concentrations of HCHO from the Inlet Location 2 (Wet Scrubber) for the two sampling runs were 3.41 mg/m^3 and 4.15 mg/m^3 respectively with an average HCHO emission concentration of 3.8 mg/m^3 . The HCHO mass emission rate from the Inlet Location 2 for the two sampling runs was 0.0021 g/s and 0.0024 g/s respectively.

Outlet: The emission concentration of HCHO from the Outlet (Conti 2 Heat Plant) for the two sampling runs conducted was less than 0.0081 mg/m^3 . The HCHO mass emission rate from the Outlet for the two sampling runs was less than 0.0003 g/s and less than 0.0003 g/s respectively.

Thermal Destruction Efficiency: The formaldehyde thermal destruction efficiency for both Run 1 and Run 2 was greater than 99.8%.

Refer to Table 3-1 and Appendix A for detailed results.

3.3 CARBON DIOXIDE

During the test period the Inlet Location 1 (Paper Treater) CO_2 emission monitoring concentrations averaged 0.7%, the Inlet Location 2 (Wet Scrubber) CO_2 emission monitoring concentrations averaged zero percent and the Outlet (Conti 2 Heat Plant) CO_2 emission monitoring concentrations averaged 4.2%. Refer Table 3.1 and Appendix B.

3.4 CARBON MONOXIDE

During the test period the Inlet Location 1 (Paper Treater) CO emission monitoring concentrations averaged 30 mg/m³, the Inlet Location 2 (Wet Scrubber) CO emission monitoring concentrations averaged 4 mg/m³ and the Outlet (Conti 2 Heat Plant) CO emission monitoring concentrations averaged 75 mg/m³. Refer Table 3.1 and Appendix B.

3.5 OXYGEN (O₂)

During the test period the Inlet Location 1 (Paper Treater Exhaust) O_2 emission monitoring concentrations averaged 19.8%, the Inlet Location 2 (Scrubber Exhaust) O_2 emission monitoring concentrations averaged 20.9% and the Outlet (Conti 2 Heat Plant) O_2 emission monitoring concentrations averaged 16.0%. Refer Appendix B for details.

3.6 OXIDES OF NITROGEN (NO_x)

During the test period the Inlet Location 1 (Paper Treater) NO_x emission monitoring concentrations averaged 10 mg/m³, the Inlet Location 2 (Wet Scrubber) NO_x emission monitoring concentrations averaged less than 2 mg/m³ and the Outlet (Conti 2 Heat Plant) NO_x emission monitoring concentrations averaged 195 mg/m³. Refer Table 3.1 and Appendix B.

Parameter	Unit of measure	Inlet Location 1 Paper Treater exhaust		Inlet Location 2 Scrubber exhaust		Outlet Conti 2 Heat Plant	
		Run 1	Run 2	Run 1	Run 2	Run 1	Run 2
Exhaust gas temperature	٥C	62	68	23.9	28.7	260	280
Normal stack gas flow rate	m ³ /min	381	360	36	34	2,545	2,498
Moisture content	%	1.4	2.3	2.4	2.5	4.8	4.8
CO ₂	%	0.	.7	0	.0	4.2	
СО	mg/m ³	3	0	4		75	
NO _x	mg/m ³	1	10 < 2		195		
O ₂	%	19	9.8	21	.0	16	5.0
HCHO concentration	mg/m ³	26.6	26.3	3.4	4.2	<0.0081	<0.0081
HCHO mass emission rate	g/s	0.17	0.16	0.0021	0.0024	<0.0003	< 0.0003

JLTS
ļ

Key:

<	=	less than the limit of detection for the analytical method
%	=	percentage
٥C	=	degrees Celsius
m ³ /min	=	cubic metres per minute @ 0°C and 1 atmosphere
mg/m ³	=	milligrams per cubic metre @ 0°C and 1 atmosphere
g/s	=	grams per second mass emission rate
mg/m ³	=	milligrams per cubic metre at 0°C and 101.3 kilopascals (kpa)
СО	=	Carbon monoxide
CO ₂	=	Carbon dioxide
NOx	=	Oxides of nitrogen
O ₂	=	Oxygen
НСНО	=	expressed as formaldehyde on 1-hour average period

4 CONCLUSIONS

From the data presented and test work conducted during typical production cycles, the following conclusions can be drawn:

- The average Inlet 1 (Paper Treater) Formaldehyde emission concentration was 26.5 mg/m³ and the average Formaldehyde mass emission rate was 0.164 g/s.
- The average Inlet 2 (Wet Scrubber) Formaldehyde emission concentration was 3.8 mg/m^3 and the average Formaldehyde mass emission rate was 0.0022 g/s.
- The average Outlet (Conti-2 Heat Plant) Formaldehyde emission concentration was less than 0.0081 mg/m³ and the average mass Formaldehyde emission rate was less than 0.0003 g/s.
- The average Formaldehyde destruction efficiency was 99.8%.

5 TEST METHODS

5.1 EXHAUST GAS VELOCITY

(OEH NSW TM-2)

Velocity profiles were obtained across the stack utilising an Airflow Developments Ltd. S-type pitot tube and inclined manometer.

5.2 EXHAUST GAS TEMPERATURE

(OEH NSW TM-2)

The exhaust gas temperature was measured using a Digital thermometer (0-1200°C) connected to a chromel/alumel (K-type) thermocouple probe.

5.3 FORMALDEHYDE

(OEH NSW TM-34, Workcover, WCA Method 179)

A stack gas sample was drawn into a 37 mm cassette loaded with two glass fibre filters in series impregnated with 2,4-Dinitrophenylhydrazine @ 0.5 litre per minute. This pair of filters is labelled front section and back section but form a total combined sample for aldehyde analysis. Each pair of filter samples was analysed by High Performance Liquid Chromatography (HPLC) by the NATA accredited laboratories of TestSafe Australia.

5.4 CONTINUOUS GASEOUS ANALYSIS

(OEH NSW TM-25)

Sampling and analysis of exhaust gas were performed using a Stephenson Environmental Management Australia's mobile combustion and environmental monitoring laboratory. Emission gases were distributed to the analysers via a manifold. The following components of the laboratory were relevant to this work:

Gas Transfer	Technical Heaters, PTFE sample lines, Temperature Controllers
Carbon Dioxide, Carbon Monoxide, Oxygen and Oxides of Nitrogen	Testo 350XL
Calibration	BOC Special Gas Mixtures relevant for each analyser. Instrument calibrations were performed at the start and finish of sampling on each stack.
QA/QC	Calibration (Zero/Span) checks

Sample line integrity calibration check

5.5 ACCURACY

All results are quoted on a dry basis. SEMA has adopted the following (Table 5-1) uncertainties for various stack testing methods.

Pollutant	Methods	Uncertainty
Carbon Monoxide	TM-32, USEPA 10	15%
Carbon Dioxide	TM-24, USEPA 3A	1% actual
Formaldehyde	TM-34, WCA Method 179	7%
Moisture	AS4323.2, TM-22, USEPA 4	25%
Nitrogen Oxides	TM-11, USEPA 7E	15%
Oxygen	TM-25, USEPA 3A	1% actual
Velocity	AS4323.1, TM-2, USEPA 2	5%

TABLE 5-1 ESTIMATION OF MEASUREMENT UNCERTAINTY

Key:

Unless otherwise indicated the uncertainties quoted have been determined @ 95% level of Confidence level (i.e. by multiplying the repeatability standard deviation by a co-efficient equal to 1.96) (Source – Measurement Uncertainty)

* = range of uncertainties given

Sources: Measurement Uncertainty – implications for the enforcement of emission limits by Maciek Lewandowski (Environment Agency) & Michael Woodfield (AEAT) UK

Technical Guidance Note (Monitoring) M2 Monitoring of stack emissions to air Environment Agency Version 3.1 June 2005.

Note: ISO 9096 is for 20-1000 mg/m^3 - which AS4323.2 is based on. Note DSEN 13284-1 testing for < 5 mg/m^3 correlates to 5 mg/m^3 with most quoted uncertainties of \pm 5.3 $mg/m^3 @$ 6.4 mg/m^3 . From Clean Air Engineering in the United States the lowest practical limit of USEPA M5 is 5 mg/m^3 under lab conditions.

APPENDIX A – EMISSION TEST RESULTS

Glossary:

%	=	percent
°C	=	Degrees Celsius
am³/min	=	cubic metre of gas at actual conditions per minute
Normal Volume (m ³)	=	cubic metre at 0°C and 760 mm pressure and 1 atmosphere
am ³	=	cubic metre of gas at actual conditions
g/g mole	=	grams per gram mole
g/s	=	grams per second
hrs	=	hours
kg/m ³	=	kilograms per cubic metre
kPa	=	kilo Pascals
m ²	=	square metre
m/s	=	metre per second
m ³ /sec	=	cubic metre per second at 0°C and 1 atmosphere
mg	=	milligrams
mg/ m ³	=	milligrams per cubic metre at 0°C and 1 atmosphere
N/A	=	Not Applicable
Abbreviations of Para	meters	
O ₂	=	Oxygen
CO	=	Carbon Monoxide
CO ₂	=	Carbon Dioxide
NO _x	=	Oxides of Nitrogen
TM	=	NSW OEH Approved Test Method
Abbreviations of Perso	onnel	
PWS	=	Peter Stephenson
AN	=	Ali Naghizadeh
JW	=	Jay Weber

Emission Test Results	Flow	Flow
Project Number	5707	5707
Project Name	Borg Manufacturing	Borg Manufacturing
Test Location	Inlet 1 – Paper Treater	Inlet 1 – Paper Treater
Date	1-Sep-2016	1-Sep-2016
RUN	1	2
Sample Start Time (hrs)	11:15	12:52
Sample Finish Time (hrs)	12:15	13:52
Sample Location (Inlet/Exhaust)	Inlet 1 – Paper Treater	Inlet 1 – Paper Treater
Stack Temperature (°C)	62.0	68.0
Stack Cross-Sectional area (m ²)	0.866	0.866
Average Stack Gas Velocity (m/s)	10.4	10.1
Actual Gas Flow Volume (am ³ /min)	540	524
Total Normal Gas Flow Volume (m ³ /min)	381	360
Total Normal Gas Flow Volume (m ³ /sec)	6.36	6.00
Total Stack Pressure (kPa)	89.13	89.06
Analysis	Flow	Flow
Method	TM-1	TM-1
Moisture Content (% by volume)	1.4	2.3
Molecular Weight Dry Stack Gas (g/g-mole)	28.904	28.904
Dry Gas Density (kg/m³)	1.29	1.29
Sampling Performed by	PWS, JW, AN	PWS, JW, AN
Sample Analysed by (Laboratory)	SEMA	SEMA
Calculations Entered by	JW	JW
Calculations Checked by	AN	AN

TABLE A-1 EMISSION TEST RESULTS, FLOW - INLET 1 (PAPER TREATER)

Emission Test Results	Flow	Flow
Project Number	5707	5707
Project Name	Borg Manufacturing	Borg Manufacturing
Test Location	Inlet 2 – Scrubber	Inlet 2 – Scrubber
Date	1-Sep-2016	1-Sep-2016
RUN	1	2
Sample Start Time (hrs)	11:15	12:52
Sample Finish Time (hrs)	12:15	13:52
Sample Location (Inlet/Exhaust)	Inlet 2 – Scrubber	Inlet 2 – Scrubber
Stack Temperature (°C)	23.9	28.7
Stack Cross-Sectional area (m ²)	0.312	0.312
Average Stack Gas Velocity (m/s)	2.4	2.4
Actual Gas Flow Volume (am ³ /min)	46	44
Total Normal Gas Flow Volume (m ³ /min)	36	34
Total Normal Gas Flow Volume (m ³ /sec)	0.60	0.57
Total Stack Pressure (kPa)	89.14	89.05
Analysis	Flow	Flow
Method	TM-1	TM-1
Moisture Content (% by volume)	2.4	2.5
Molecular Weight Dry Stack Gas (g/g-mole)	28.841	28.841
Dry Gas Density (kg/m³)	1.29	1.29
Sampling Performed by	PWS, JW, AN	PWS, JW, AN
Sample Analysed by (Laboratory)	SEMA	SEMA
Calculations Entered by	JW	JW
Calculations Checked by	AN	AN

TABLE A-2 EMISSION TEST RESULTS, FLOW - INLET 2 (WET SCRUBBER)

Emission Test Results	Flow	Flow
Project Number	5707	5707
Project Name	Borg Manufacturing	Borg Manufacturing
Test Location	Exhaust	Exhaust
Date	1-Sep-2016	1-Sep-2016
RUN	1	2
Sample Start Time (hrs)	11:15	12:52
Sample Finish Time (hrs)	12:15	13:52
Sample Location (Inlet/Exhaust)	Exhaust	Exhaust
Stack Temperature (°C)	260	280
Stack Cross-Sectional area (m ²)	4.619	4.619
Average Stack Gas Velocity (m/s)	21	22
Actual Gas Flow Volume (am ³ /min)	5,922	6,035
Total Normal Gas Flow Volume (m ³ /min)	2,545	2,498
Total Normal Gas Flow Volume (m ³ /sec)	42	42
Total Stack Pressure (kPa)	89.3	89.3
Analysis	Flow	Flow
Method	TM-1	TM-1
Moisture Content (% by volume)	4.8	4.8
Molecular Weight Dry Stack Gas (g/g-mole)	29.307	29.307
Dry Gas Density (kg/m ³)	1.31	1.31
Sampling Performed by	PWS, JW, AN	PWS, JW, AN
Sample Analysed by (Laboratory)	SEMA	SEMA
Calculations Entered by	JW	JW
Calculations Checked by	AN	AN

TABLE A-3 EMISSION TEST RESULTS, FLOW - OUTLET (CONTI-2 HEAT PLANT)

APPENDIX B – CONTINUOUS LOGS

REPRESENTATIVE SECTION OF CHARTS - CONCENTRATIONS OF NOx, CO, CO2 & O2

FIGURE B-1 CONTINUOUS LOG RECORD - NOx, CO, CO2 & O2 INLET LOCATION 1, SEPTEMBER 1, 2016

FIGURE B-2 CONTINUOUS LOG RECORD - NOx, CO, CO2 & O2 INLET LOCATION 2, SEPTEMBER 1, 2016

FIGURE B-3 CONTINUOUS LOG RECORD - NOx, CO, CO2 & O2 OUTLET LOCATION, SEPTEMBER 1, 2016

APPENDIX C - NATA ENDORSED EMISSION TEST REPORT

Client

Stephenson

Environmental Management Australia

Peter W Stephenson & Associates Pty Ltd ACN 002 600 526 (Incorporated in NSW) ABN 75 002 600 526

52A Hampstead Road Auburn NSW 2144 Australia Tel: (02) 9737 9991 E-Mail: info@stephensonenv.com.au

Emissions Test Report No. 5707

The sampling and analysis was commissioned by:

Organisation:	Borg Manufacturing
Contact:	Victor Bendevski
Address:	Lowes Mount Road, Oberon NSW 2787
Telephone:	02 4340 8271
Email:	bendevskiv@borgs.com.au
Project Number:	5707/S24371B/16
Test Date:	1 September 2016
Production Conditions:	Normal operating conditions during testing
Analysis Requested:	Flow, temperature, moisture, Carbon Monoxide, Carbon Dioxide, Nitrogen Oxides, Oxygen and Formaldehyde.
Sample Locations:	Paper Treater, Wet Scrubber and Conti-2 Heat Plant
Sample ID Nos.:	See Attachment A

This report cannot be reproduced except in full.

NATA accredited laboratory number 15043. Accredited for Compliance with ISO/IEC 17025.

STEPHENSON ENVIRONMENTAL MANAGEMENT AUSTRALIA

VERSION: 2.1

Borg Panels Pty Ltd Oberon, NSW	Proof of Performance Trial September 201 <i>6</i>		
2		Emission Test Report No.5707	
Identification	The samples are labelled i the testing laboratory, sam Identification) sampling da analysis is required.	ndividually. Each label recorded ple number, sampling location (or ite and time and whether further	
Test	Test Method Number for Sampling and Analysis	NATA Laboratory Analysis By: NATA Accreditation No. & Report No.	
Carbon Monoxide	NSW TM-32	SEMA, Accreditation No. 15043 Emission Test Report No. 5707	
Carbon Dioxide	NSW TM-24	SEMA, Accreditation No. 15043 Emission Test Report No. 5707	
Dry Gas Density	NSW TM-23	SEMA, Accreditation No. 15043 Emission Test Report No. 5707	
Aldehydes/Formaldehyde	NSW TM-34 / WorkCover Method 179	Test Safe Australia, Accreditation No. 3726 Reports No.2016 -2756	
Oxides of Nitrogen	NSW TM-11	SEMA, Accreditation No. 15043 Emission Test Report No. 5707	
Oxygen	NSW TM-25, USEPA M3A	SEMA, Accreditation No. 15043 Emission Test Report No. 5707	
Velocity	NSW TM-2, USEPA M2	SEMA, Accreditation No. 15043 Emission Test Report No. 5707	
Deviations from Test Methods	Nil		
Sampling Times	NSW - As per Test Method res the Test Method then as per P Operations (Clean Air) Regula	quirements or if not specified in rotection of the Environment ations Part 2.	

STEPHENSON ENVIRONMENTAL MANAGEMENT AUSTRALIA

VERSION: 2.1

PAGE 2 OF 6

EMISSION TEST REPORT NO.5707

Reference Conditions

NSW - As per

- (1) Environment Protection Licence conditions, or
- (2) Part 3 of the Protection of the Environment Operations (Clean Air) Regulations

All associated NATA endorsed Test Reports/Certificates of Analysis are provided separately in Attachment A.

Issue Date 14 September 2016

Stephenn

P W Stephenson

STEPHENSON ENVIRONMENTAL MANAGEMENT AUSTRALIA

PAGE 3 OF 6

VERSION: 2.1

Parameter	Unit of measure	Unit of Inlet measure Location 1 Paper Treater exhaust		Inlet Location 2 Scrubber exhaust		Outlet Conti 2 Heat Plant	
	Î	Run 1	Run 2	Run 1	Run 2	Run 1	Run 2
Exhaust gas temperature	°C	62	68	23.9	28.7	260	280
Normal stack gas flow rate	m³/min	381	360	36	34	2545	2498
Moisture content	%	1.4	2.3	2.4	2.5	4.8	4.8
Oxygen	%	19	9.8	2	1.0	10	5.0
Nitrogen Oxides	mg/m ³	10		<	2	1	95
Carbon Monoxide	mg/m³	30		10	4	2	'5
Carbon Dioxide	%	0.7		0	.0	4	.2
Formaldehyde concentration	mg/m ³	26.6	26.3	3.4	4.15	<0.0081	<0.0081
Formaldehyde mass emission rate	g/s	0.17	0.16	0.0021	0.0024	<0.0003	< 0.0003

SUMMARY OF THE AVERAGE EMISSION RESULTS - TEST REPORT NO. 5707

*	r.	-		
к	a	е	ν	2
•	٦.	۳,	2	

<	=	less than the limit of detection for the analytical method
%	-	percentage
°C		degrees Celsius
m ³ /min	=	cubic metres per minute @ 0°C and 1 atmosphere
mg/m ³	-	milligrams per cubic metre @ 0°C and 1 atmosphere
g/s	-	grams per second mass emission rate
mg/m ³	-	milligrams per cubic metre at 0°C and 101.3 kilopascals (kpa)

EMISSION TEST REPORT NO.5707

ESTIMATED UNCERTAINTY OF MEASUREMENT

Pollutant	Methods	Uncertainty
Moisture	AS4323.2, TM-22, USEPA 4	25%
Carbon Dioxide	TM-32, USEPA 10	15%
Carbon Monoxide	TM-24, USEPA 3A	1% actual
Nitrogen Oxides	TM-11, USEPA 7E	15%
Oxygen	TM-24, TM-25, USEPA 3A	1% actual
Formaldehyde	OSHA-64 (WCA Method 179)	7%
Velocity	AS4323.1, TM-2, USEPA 2	5%

Key:

Unless otherwise indicated the uncertainties quoted have been determined @ 95% level of Confidence level (i.e. by multiplying the repeatability standard deviation by a co-efficient equal to 1.96) (Source – Measurement Uncertainty)

Sources: Measurement Uncertainty – implications for the enforcement of emission limits by Maciek Lewandowski (Environment Agency) & Michael Woodfield (AEAT) UK

Technical Guidance Note (Monitoring) M2 Monitoring of stack emissions to air Environment Agency Version 3.1 June 2005.

Note: ISO 9096 is for 20-1000 mg/m³ which AS4323.2 is based on. Note DSEN 13284-1 testing for < 5 mg/m³ correlates to 5 mg/m³ with most quoted uncertainties of ± 5.3 mg/m³ @ 6.4 mg/m³. From Clean Air Engineering in the United States the lowest practical limit of USEPA M5 is 5 mg/m³ under lab conditions.

STEPHENSON ENVIRONMENTAL MANAGEMENT AUSTRALIA

EMISSION TEST REPORT NO.5707

ATTACHMENT A - NATA CERTIFICATES OF ANALYSIS

STEPHENSON ENVIRONMENTAL MANAGEMENT AUSTRALIA

2016-2756

Lab. Reference: Stephenson Environmental Management Australia PO Box 6398 SILVERWATER NSW 1811

SAMPLE ORIGIN: 5707

DATE OF INVESTIGATION: 01/09/2016

DATE RECEIVED: 5/09/16

ANALYSIS REQUIRED: Aldehyde Screen

REPORT OF ANALYSIS

See attached sheet(s) for sample description and test results.

0

TestSafe Australia – Chemical Analysis Branch Level 2, Building 1, 9-15 Chilvers Road, Thornleigh, NSW 2120, Australia T: +61 2 9473 4000 E: <u>lab@safework.nsw.gov.au</u> W: <u>testsafe.com.au</u> ABN 81 913 830 179

The results of this report have been approved by the signatory whose signature appears below.

For all administrative or account details please contact the Laboratory.

arerelad Martin Mazereeuw

Manager

Date: 12/09/16

Accreditation No. 3726 Accredited for compliance with ISO/IEC 17025

Analysis of Aldehydes in Air

Client : Jay Weber

SEMA

Date Sampled : 1-Sep-2016

Project No. : 5707

Reference Number	Sample ID	Formaldehyde (µg/Sample)		
		Front Section	Back Section	
2016-2756-1	725728	400.2 ± 87.2	433.4 ± 94.5	
2016-2756-2	725729	399.0 ± 87.0	$\textbf{423.5} \pm \textbf{92.3}$	
2016-2756-3	725730	102.5 ± 22.3	ND	
2016-2756-4	725731	124.5 ± 27.1	0.29 ± 0.06	
2016-2756-5	725732	ND	ND	
2016-2756-6	725733	ND	ND	
2016-2756-7	725734 (Blank)	ND	ND	

Reference Number	Sample ID	Acetaldehyde (µg/Sample)		
		Front Section	Back Section	
2016-2756-1	725728	0.89 ± 0.19	1.78 ± 0.39	
2016-2756-2	725729	0.64 ± 0.14	1.73 ± 0.38	
2016-2756-3	725730	3.74 ± 0.82	$\textbf{0.83} \pm \textbf{0.18}$	
2016-2756-4	725731	3.76 ± 0.82	0.63 ± 0.14	
2016-2756-5	725732	ND	0.51 ± 0.11	
2016-2756-6	725733	ND	ND	
2016-2756-7	725734 (Blank)	ND	ND	

2016-2756.xlsx TestSafe Australia – Chemical Analysis Branch

Page 2 of 5

ABN 81 913 830 179 Level 2, Building 1, 9–15 Chilvers Road, Thornleigh, NSW 2120, Australia Telephone +61 2 9473 4000 Email lab@safework.nsw.gov.au Website testsafe.com.au

Accreditation No. 3726 Accredited for compliance with ISO/IEC 17025

SW08051 1215

Analysis of Aldehydes in Air

Client : Jay Weber SEMA Date Sampled : 1-Sep-2016

Project No. : 5707

Reference Number	Sample ID	Chloroacetaldehyde (µg/Sample)	
		Front Section	Back Section
2016-2756-1	725728	ND	ND
2016-2756-2	725729	ND	ND
2016-2756-3	725730	ND	ND
2016-2756-4	725731	ND	ND
2016-2756-5	725732	ND	ND
2016-2756-6	725733	ND	ND
2016-2756-7	725734 (Blank)	ND	ND

Reference Number	Sample ID	Acrolein (µg/Sample)	
		Front Section	Back Section
2016-2756-1	725728	ND	ND
2016-2756-2	725729	ND	ND
2016-2756-3	725730	ND	ND
2016-2756-4	725731	ND	ND
2016-2756-5	725732	ND	ND
2016-2756-6	725733	ND	ND
2016-2756-7	725734 (Blank)	ND	ND

2016-2756.xlsx TestSafe Australia – Chemical Analysis Branch Page 3 of 5

ABN 81 913 830 179 Level 2, Building 1, 9–15 Chilvers Road, Thornleigh, NSW 2120, Austrelia Telephone +61 2 9473 4000 Email lab@safework.nsw.gov.au Website testsafe.com.au

Accreditation No. 3726 Accredited for compliance with ISO/IEC 17025

SW08061 1215

Analysis of Aldehydes in Air

Client : Jay Weber SEMA

Date Sampled : 1-Sep-2016 Project No. : 5707

Reference Number	Sample ID	Crotonaldehyde (µg/Sample)	
		Front Section	Back Section
2016-2756-1	725728	ND	ND
2016-2756-2	725729	ND	ND
2016-2756-3	725730	ND	ND
2016-2756-4	725731	ND	ND
2016-2756-5	725732	ND	ND
2016-2756-6	725733	ND	ND
2016-2756-7	725734 (Blank)	ND	ND

Reference Number	Sample ID	Valeraldehyde (µg/Sample)	
		Front Section	Back Section
2016-2756-1	725728	ND	ND
2016-2756-2	725729	ND	ND
2016-2756-3	725730	ND	ND
2016-2756-4	725731	ND	ND
2016-2756-5	725732	ND	ND
2016-2756-6	725733	ND	ND
2016-2756-7	725734 (Blank)	ND	ND

 2016-2756 x lsx
 Page 4 of 5

 TestSafe Australia – Chemical Analysis Branch
 ABN 81 913 830 179
 Level 2, Building 1, 9–15 Chilvers Road, Thornleigh, NSW 2120, Australia

 Telephone +61 2 9473 4000
 Email lab@safework.nsw.gov.au
 Website testsafe.com.au

Accreditation No. 3726 Accredited for compliance with ISO/IEC 17025

SW09051 1215

2016-2756.xlsx TestSafe Australia – Chemical Analysis Branch

Page 5 of 5

ABN 81 913 830 179 Level 2, Building 1, 9–15 Chilvers Road, Thornleigh, NSW 2120, Australia Telephone +61 2 9473 4000 Email lab@safework.nsw.gov.au Website testsafe.com.au

Accreditation No. 3726 Accredited for compliance with ISO/IEC 17025

SW08051 1215

APPENDIX D – INSTRUMENT CALIBRATION DETAILS

SEMA Asset No.	Equipment Description	Date Last Calibrated	Calibration Due Date		
859	Digital Temperature Reader	30-Jun-16	30-Dec-16		
921	Thermocouple	30-Jun-16	30-Dec-16		
894	Thermocouple	30-Jun-16	30-Dec-16		
879	Digital Manometer	26-Feb-16	26-Feb-17		
613	Barometer	26-Feb-16	26-Feb-17		
726	Pitot	03-Jun-16	03-Jun-2017 Visually inspected On-Site before use		
928	Balance		Response Check with SEMA Site Mass		
646	Stopwatch	25-Jul-16	25-Jan-17		
946	Testo 350 (cal check each job)	19-Aug-16	19-Feb-17		
655	Testo 350 (cal check each job)	19-Aug-16	19-Feb-17		
832	Personal Sampler	22-Mar-16	22-Mar-17		
12	Personal Sampler	05-Aug-16	06-Aug-17		
833	Personal Sampler	22-Mar-16	22-Mar-17		
Gas Mixtures used for Analyser Span Response					
Conc.	Mixture	Cylinder No.	Expiry Date		
245 ppm 245 ppm 250 ppm	Nitric Oxide Total Oxide Of Nitrogen In Nitrogen Sulphur Dioxide In Nitrogen	ALSB 1372	05-Jan-20		
393 ppm 399 ppm	Nitric Oxide Total Oxide Of Nitrogen In Nitrogen	ALSM 1604	25-Oct-18		
902 ppm 9.8% 10.4%	Carbon Monoxide Carbon Dioxide Oxygen In Nitrogen	ALSB 4980	07-Feb-18		
383 ppm	Sulphur Dioxide In Nitrogen	ALSD 3948	25-Oct-18		

TABLE D-1 INSTRUMENT CALIBRATION DETAILS

APPENDIX E - SAMPLE LOCATIONS

FIGURE E-1 INLET LOCATION 1 – PAPER TREATER DUCT

FIGURE E-2 INLET LOCATION 2 - WET SCRUBBER DUCT

FIGURE E-3 OUTLET LOCATION - CONTI-2 HEAT PLANT OUTLET

FIGURE E-4 CONTI-2 HEAT PLANT OUTLET BYPASS DAMPER CONTROLS (DAMPER SHUT)

APPENDIX F – PRODUCTION INFORMATION

FIGURE F-1 SCREEN SHOT 1- HEAT PLANT

FIGURE F-2 SCREEN SHOT 2 - HEAT PLANT

FIGURE F-3 SCREEN SHOT 3 – HEAT PLANT

FIGURE F-4 SCREEN SHOT 4 – PAPER TREATER (GRAVURE COATER)

FIGURE F-5 SCREEN SHOT 5 – PAPER TREATER (CROSS CUTTER)

FIGURE F-6 SCREEN SHOT 6 - PAPER TREATER (IMPREGNATION UNIT)

